Computes ROC curves (weighted or unweighted) for evaluating propensity score balance. In causal inference, an ROC curve near the diagonal (AUC around 0.5) indicates good balance between treatment groups.
Usage
check_model_roc_curve(
.data,
.exposure,
.estimate,
.weights = NULL,
include_observed = TRUE,
na.rm = TRUE,
.focal_level = NULL
)
Arguments
- .data
A data frame containing the variables.
- .exposure
The treatment/outcome variable (unquoted).
- .estimate
The propensity score or covariate (unquoted).
- .weights
Optional weighting variables (unquoted, can be multiple).
- include_observed
Include unweighted results? Default TRUE.
- na.rm
Remove missing values? Default TRUE.
- .focal_level
The level of
.exposure
to consider as the treatment/event. Default is NULL, which uses the second level.
See also
check_model_auc()
for AUC summaries, bal_model_roc_curve()
for single ROC curves
Other balance functions:
bal_corr()
,
bal_ess()
,
bal_ks()
,
bal_model_auc()
,
bal_model_roc_curve()
,
bal_qq()
,
bal_smd()
,
bal_vr()
,
check_balance()
,
check_ess()
,
check_model_auc()
,
check_qq()
,
plot_balance()