Skip to contents

Calculate quantile-quantile data comparing the distribution of a variable between treatment groups for a single weighting scheme (or unweighted). This function computes the quantiles for both groups and returns a data frame suitable for plotting or further analysis.

Usage

bal_qq(
  .data,
  .var,
  .exposure,
  .weights = NULL,
  quantiles = seq(0.01, 0.99, 0.01),
  .reference_level = NULL,
  na.rm = FALSE
)

Arguments

.data

A data frame containing the variables.

.var

Variable to compute quantiles for (unquoted).

.exposure

Column name of treatment/group variable (unquoted).

.weights

Optional single weight variable (unquoted). If NULL, computes unweighted quantiles.

quantiles

Numeric vector of quantiles to compute. Default is seq(0.01, 0.99, 0.01) for 99 quantiles.

.reference_level

The reference group level for comparisons. Can be either a group level value or a numeric index. If NULL (default), uses the first level.

na.rm

A logical value indicating whether to remove missing values before computation. If FALSE (default), missing values in the input will produce NA in the output.

Value

A tibble with columns:

quantile

Numeric. The quantile probability (0-1).

exposed_quantiles

Numeric. The quantile value for the exposed group.

unexposed_quantiles

Numeric. The quantile value for the unexposed group.

Details

This function computes the data needed for quantile-quantile plots by calculating corresponding quantiles from two distributions. The computation uses the inverse of the empirical cumulative distribution function (ECDF). For weighted data, it first computes the weighted ECDF and then inverts it to obtain quantiles.

When the distributions of a variable are similar between treatment groups (indicating good balance), the QQ plot points will lie close to the diagonal line y = x.

See also

check_qq() for computing QQ data across multiple weights, plot_qq() for visualization

Other balance functions: bal_corr(), bal_ess(), bal_ks(), bal_model_auc(), bal_model_roc_curve(), bal_smd(), bal_vr(), check_balance(), check_ess(), check_model_auc(), check_model_roc_curve(), check_qq(), plot_balance()

Examples

# Unweighted QQ data
bal_qq(nhefs_weights, age, qsmk)
#> # A tibble: 99 × 3
#>    quantile exposed_quantiles unexposed_quantiles
#>       <dbl>             <dbl>               <dbl>
#>  1     0.01                25                25  
#>  2     0.02                25                25  
#>  3     0.03                26                25  
#>  4     0.04                26                25.5
#>  5     0.05                27                26  
#>  6     0.06                27                26  
#>  7     0.07                28                26  
#>  8     0.08                28                27  
#>  9     0.09                29                27  
#> 10     0.1                 29                28  
#> # ℹ 89 more rows

# Weighted QQ data
bal_qq(nhefs_weights, age, qsmk, .weights = w_ate)
#> # A tibble: 99 × 3
#>    quantile exposed_quantiles unexposed_quantiles
#>       <dbl>             <dbl>               <dbl>
#>  1     0.01              25                    25
#>  2     0.02              25                    25
#>  3     0.03              25.3                  25
#>  4     0.04              26                    26
#>  5     0.05              26                    26
#>  6     0.06              26                    26
#>  7     0.07              27                    27
#>  8     0.08              27                    27
#>  9     0.09              28                    27
#> 10     0.1               28                    28
#> # ℹ 89 more rows

# Custom quantiles
bal_qq(nhefs_weights, age, qsmk, .weights = w_ate,
       quantiles = seq(0.1, 0.9, 0.1))
#> # A tibble: 9 × 3
#>   quantile exposed_quantiles unexposed_quantiles
#>      <dbl>             <dbl>               <dbl>
#> 1      0.1              28                    28
#> 2      0.2              32                    31
#> 3      0.3              34.1                  35
#> 4      0.4              39                    39
#> 5      0.5              43                    43
#> 6      0.6              47                    47
#> 7      0.7              51                    50
#> 8      0.8              55                    54
#> 9      0.9              60                    60