Skip to contents

ps_trim() applies trimming methods to a propensity-score vector, returning a new vector of the same length, with trimmed entries replaced by NA. You can inspect further metadata in ps_trim_meta(x). After running ps_trim(), you should refit the model with ps_refit().

Usage

ps_trim(
  ps,
  method = c("ps", "adaptive", "pctl", "pref", "cr"),
  lower = NULL,
  upper = NULL,
  .exposure = NULL,
  .treated = NULL,
  .untreated = NULL
)

Arguments

ps

The propensity score, a numeric vector between 0 and 1.

method

One of c("ps", "adaptive", "pctl", "pref", "cr").

lower, upper

Numeric cutoffs or quantiles. If NULL, defaults vary by method.

.exposure

For methods like "pref" or "cr", a vector for a binary exposure.

.treated

The value representing the treatment group. If not provided, it is automatically detected.

.untreated

The value representing the control group. If not provided, it is automatically detected.

Value

A ps_trim object (numeric vector). The attribute ps_trim_meta stores metadata.

Details

The returned object is a ps_trim vector of the same length as ps, but with trimmed entries replaced by NA. An attribute ps_trim_meta contains:

  • method: Which trimming method was used

  • keep_idx: Indices retained

  • trimmed_idx: Indices replaced by NA

  • Possibly other fields such as final cutoffs, etc.

See also

ps_trunc() for bounding/winsorizing instead of discarding, is_refit(), is_ps_trimmed()

Examples


set.seed(2)
n <- 300
x <- rnorm(n)
z <- rbinom(n, 1, plogis(1.3 * x))
fit <- glm(z ~ x, family = binomial)
ps <- predict(fit, type = "response")

ps_trim(ps, method = "adaptive")
#> <ps_trim; trimmed 44 of [300]>
#>         1         2         3         4         5         6         7         8 
#> 0.1780112 0.4934483 0.8725819 0.1353577 0.4025855 0.4752489 0.6683913 0.3506150 
#>         9        10        11        12        13        14        15        16 
#>        NA 0.3831809 0.5738044 0.7467782 0.3038553 0.1508037 0.8997256        NA 
#>        17        18        19        20        21        22        23        24 
#> 0.7187207 0.4419184 0.7548592 0.5787647        NA 0.1244366 0.8728587        NA 
#>        25        26        27        28        29        30        31        32 
#> 0.4313639        NA 0.5939254 0.2474276 0.6938170 0.5298266 0.6778670 0.5399668 
#>        33        34        35        36        37        38        39        40 
#> 0.7707828 0.3366773 0.2037945 0.2476600        NA 0.1768609 0.2572600 0.3484614 
#>        41        42        43        44        45        46        47        48 
#> 0.3065403        NA 0.1895191        NA 0.6415565        NA 0.3300895 0.3990495 
#>        49        50        51        52        53        54        55        56 
#> 0.3683877 0.1246121 0.1902500        NA 0.2564150 0.8160957 0.1494022        NA 
#>        57        58        59        60        61        62        63        64 
#> 0.3247367 0.7345271 0.7859021 0.8849770        NA        NA 0.2208817 0.4841803 
#>        65        66        67        68        69        70        71        72 
#> 0.6036086 0.1941979        NA 0.2790100 0.4585602 0.1783019 0.1731103 0.5439312 
#>        73        74        75        76        77        78        79        80 
#> 0.3822372 0.5796397 0.4114856 0.1759469 0.8218240 0.6877562 0.7649259        NA 
#>        81        82        83        84        85        86        87        88 
#> 0.7505008        NA 0.2641422 0.1005949        NA        NA 0.2330120 0.3365148 
#>        89        90        91        92        93        94        95        96 
#> 0.3055473 0.5632496 0.8745082 0.8863194 0.1269292 0.1023453        NA 0.1166039 
#>        97        98        99       100       101       102       103       104 
#>        NA 0.4322875 0.1893249 0.2462384 0.7703638 0.5197606 0.3273939 0.2099624 
#>       105       106       107       108       109       110       111       112 
#> 0.1851823        NA 0.7356255        NA 0.2954896 0.3163021 0.1530042 0.3471981 
#>       113       114       115       116       117       118       119       120 
#> 0.5921212 0.8328274 0.6227067 0.5867797 0.8065734 0.7877456 0.4663064 0.2023006 
#>       121       122       123       124       125       126       127       128 
#> 0.8087856 0.4774812 0.8903829 0.2928150 0.1499937 0.6139848 0.2290136 0.6467536 
#>       129       130       131       132       133       134       135       136 
#>        NA        NA 0.6627758 0.5441083 0.7165979        NA 0.8025574 0.7998822 
#>       137       138       139       140       141       142       143       144 
#> 0.7597742 0.6921037        NA        NA 0.2509264 0.5711077 0.1970442 0.4590332 
#>       145       146       147       148       149       150       151       152 
#> 0.6800801 0.2329425 0.6525433 0.6180388 0.1970997 0.1584870 0.7452343 0.3731672 
#>       153       154       155       156       157       158       159       160 
#> 0.6727629 0.1889404 0.8164247 0.1043218 0.6858279 0.5895482 0.5223260 0.6558189 
#>       161       162       163       164       165       166       167       168 
#> 0.5672709 0.2368400 0.3418011 0.5540597 0.1083159 0.1806594        NA        NA 
#>       169       170       171       172       173       174       175       176 
#> 0.1187105 0.7490531 0.7738375 0.7077039 0.4491471 0.5416643 0.1764396 0.2333126 
#>       177       178       179       180       181       182       183       184 
#> 0.3434474 0.1704628 0.7023006        NA 0.1524604 0.1153463 0.5651259 0.1351849 
#>       185       186       187       188       189       190       191       192 
#> 0.6161453 0.7945146 0.4382952 0.6065642 0.2328341 0.6027459 0.1139088 0.4037497 
#>       193       194       195       196       197       198       199       200 
#> 0.1040353 0.3422376 0.7735701 0.6661116 0.2893391 0.2011360 0.1863223 0.2107038 
#>       201       202       203       204       205       206       207       208 
#> 0.5327159 0.1544197        NA 0.5052145 0.1642856 0.5622725 0.3887452 0.3163883 
#>       209       210       211       212       213       214       215       216 
#> 0.6341619 0.5095796 0.7582940 0.2665601        NA        NA 0.4774214 0.5852567 
#>       217       218       219       220       221       222       223       224 
#> 0.8030404 0.1067663 0.1338595 0.8855459 0.5671613 0.6707177 0.2000938        NA 
#>       225       226       227       228       229       230       231       232 
#> 0.4538222 0.5912550 0.3993802 0.7230688 0.3094663        NA 0.8702859        NA 
#>       233       234       235       236       237       238       239       240 
#> 0.2415827 0.4195113        NA 0.1483657 0.2541910 0.5957602 0.4626159 0.2496911 
#>       241       242       243       244       245       246       247       248 
#> 0.4020747        NA 0.7936546 0.6179515 0.6899355 0.2556513 0.4650462 0.5270157 
#>       249       250       251       252       253       254       255       256 
#> 0.2803714 0.2850014 0.6020472 0.3002118 0.3705819 0.3257820 0.7087374 0.5960756 
#>       257       258       259       260       261       262       263       264 
#> 0.3306472 0.3363861 0.7464321 0.3725508 0.8297224 0.3965473 0.3250342        NA 
#>       265       266       267       268       269       270       271       272 
#> 0.2345937        NA        NA 0.5886632 0.6106387 0.4172303        NA 0.4137080 
#>       273       274       275       276       277       278       279       280 
#> 0.4312953 0.1206438 0.5164038 0.8752400 0.4176263 0.7591012 0.3016993 0.4527210 
#>       281       282       283       284       285       286       287       288 
#>        NA 0.6501483 0.8168531 0.2393292 0.8311549 0.8851143 0.7936328 0.4317872 
#>       289       290       291       292       293       294       295       296 
#> 0.8222307 0.3983355 0.1356224 0.6302455 0.4602807 0.3527491 0.8562989 0.3153233 
#>       297       298       299       300 
#> 0.5741435        NA 0.1008201 0.2253829